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A powerful and well-established tool for free-energy estimation is Bennett’s acceptance ratio method. Cen-
tral properties of this estimator, which employs samples of work values of a forward and its time-reversed
process, are known: for given sets of measured work values, it results in the best estimate of the free-energy
difference in the large sample limit. Here we state and prove a further characteristic of the acceptance ratio
method: the convexity of its mean-square error. As a two-sided estimator, it depends on the ratio of the
numbers of forward and reverse work values used. Convexity of its mean-square error immediately implies that
there exists a unique optimal ratio for which the error becomes minimal. Further, it yields insight into the
relation of the acceptance ratio method and estimators based on the Jarzynski equation. As an application, we
study the performance of a dynamic strategy of sampling forward and reverse work values.
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I. INTRODUCTION

A quantity of central interest in thermodynamics and sta-
tistical physics is the �Helmholtz� free energy, as it deter-
mines the equilibrium properties of the system under consid-
eration. In practical applications, e.g., drug design, molecular
association, thermodynamic stability, and binding affinity, it
is usually sufficient to know free-energy differences. As re-
cent progress in statistical physics has shown, free-energy
differences, which refer to equilibrium, can be determined
via nonequilibrium processes �1,2�.

Typically, free-energy differences are beyond the scope of
analytic computations and one needs to measure them ex-
perimentally or compute them numerically. Highly efficient
methods have been developed in order to estimate free-
energy differences precisely, including thermodynamic inte-
gration �3,4�, free-energy perturbation �5�, umbrella sam-
pling �6–8�, adiabatic switching �9�, dynamic methods
�10–12�, asymptotics of work distributions �13�, optimal pro-
tocols �14�, targeted, and escorted free-energy perturbation
�15–19�.

A powerful �20–22� and frequently �23–25� used method
for free-energy determination is two-sided estimation, i.e.,
Bennett’s acceptance ratio method �26�, which employs a
sample of work values of a driven nonequilibrium process
together with a sample of work values of the time-reversed
process �27�.

The performance of two-sided free-energy estimation de-
pends on the ratio

r =
n1

n0
�1�

of the number of forward and reverse work values used.
Think of an experimenter who wishes to estimate the free-
energy difference with Bennett’s acceptance ratio method
and has the possibility to generate forward as well as reverse
work values. The capabilities of the experiment give rise to

an obvious question: if the total amount of draws is intended
to be N=n0+n1, which is the optimal choice of partitioning
N into the numbers n0 of forward and n1 of reverse work
values or, equivalently, what is the optimal choice ro of the
ratio r? The problem is to determine the value of r that
minimizes the �asymptotic� mean-square error of Bennett’s
estimator when N=n0+n1 is held constant.

While known since Bennett �26�, the optimal ratio is un-
derutilized in the literature. Bennett himself proposed to use
a suboptimal equal-time strategy, instead, because his esti-
mator for the optimal ratio converges too slowly in order to
be practicable. Even questions as fundamental as the exis-
tence and uniqueness are unanswered in the literature. More-
over, it is not always clear a priori whether two-sided free-
energy estimation is better than one-sided exponential work
averaging. For instance, Shirts and Pande presented a physi-
cal example where it is optimal to draw work values from
only one direction �28�.

The paper is organized as follows. In Secs. II and III we
rederive two-sided free-energy estimation and the optimal
ratio. We also remind that two-sided estimation comprises
one-sided exponential work averaging as limiting cases for
ln r→ ��, a result that is also true for the mean-square
errors of the corresponding estimators.

The central result is stated in Sec. IV: the asymptotic
mean-square error of two-sided estimation is convex in the
fraction

n0

N of forward work values used. This fundamental
characteristic immediately implies that the optimal ratio ro
exists and is unique. Moreover, it explains the generic supe-
riority of two-sided estimation if compared with one sided,
as found in many applications.

To overcome the slow convergence of Bennett’s estimator
of the optimal ratio, which is based on estimating second
moments, in Sec. V we transform the problem into another
form such that the corresponding estimator is entirely based
on first moments, which enhances the convergence enor-
mously.

As an application, in Sec. VII we present a dynamic strat-
egy of sampling forward and reverse work values that maxi-
mizes the efficiency of two-sided free-energy estimation.
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II. TWO-SIDED FREE-ENERGY ESTIMATION

Given a pair of samples of n0 forward and n1 reverse work
values drawn from the probability densities p0�w� and p1�w�
of forward and reverse work values and provided the latter
are related to each other via the fluctuation theorem �2�,

p0�w�
p1�w�

= ew−�f , �2�

Bennett’s acceptance ratio method �20,26,27,29� is known to
give the optimal estimate of the free-energy difference �f in
the limit of large sample sizes. Throughout the paper, �f
=�F /kT and w=W /kT are understood to be measured in
units of the thermal energy kT. The normalized probability
densities p0�w� and p1�w� are assumed to have the same
support �, and we choose the following sign convention:
p0�w�ªpforward�+w� and p1�w�ªpreverse�−w�.

Now define a normalized density p��w� with

p��w� =
1

U�

p0�w�p1�w�
�p0�w� + �p1�w�

, �3�

w��, where �� �0,1� is a real number and

� + � = 1. �4�

The normalization constant U� is given by

U� = �
�

p0p1

�p0 + �p1
dw . �5�

The density p��w� is a normalized harmonic mean of p0 and
p1,

p0p1

�p0+�p1
= �� 1

p1
+� 1

p0
�−1, and thus bridges between p0 and

p1 �see Fig. 1�. In the limit �→0, p��w� converges to the
forward work density p0�w� and, conversely, for �→1 it
converges to the reverse density p1�w�. As a consequence of
the inequality of the harmonic and arithmetic mean �� 1

p1

+� 1
p0

�−1��p1+�p0, U� is bounded from above by unity,

U� � 1, �6�

∀�� �0,1�. Except for �=0 and �=1, the equality holds if
and only if p0� p1. Using the fluctuation theorem �2�, U� can
be written as an average in p0 and p1,

U� = � 1

� + �e−w+�f�
1

= � 1

� + �ew−�f�
0
, �7�

where the angular brackets with subscript 	� �0,1� denote
an ensemble average with respect to p	, i.e.,

	g
	 = �
�

g�w�p	�w�dw , �8�

for an arbitrary function g�w�.
In setting �=1, Eq. �7� reduces to the nonequilibrium

work relation �1�,

1 = 	e−w+�f
0, �9�

in the forward direction and, conversely, with �=0 we obtain
the nonequilibrium work relation in the reverse direction,

1 = 	ew−�f
1. �10�

The last two relations can, of course, be obtained more di-
rectly from the fluctuation theorem �2�. An important appli-
cation of these relations is the one-sided free-energy estima-
tion. Given a sample �w1

0 . . .wN
0 � of N forward work values

drawn from p0, Eq. �9� is commonly used to define the for-

ward estimate �f̂

0 of �f with

�f̂

0 = − ln
1

N


k=1

N

e−wk
0
. �11�

Conversely, given a sample �w1
1 . . .wN

1 � of N reverse work
values drawn from p1, Eq. �10� suggests the definition of the

reverse estimate �f̂

1 of �f ,

�f̂

1 = ln
1

N


l=1

N

ewl
1
. �12�

If we have drawn both, a sample of n0 forward and a
sample of n1 reverse work values then Eq. �7� can serve us to

define a two-sided estimate �f̂ of �f by replacing the en-
semble averages with sample averages,

1

n1


l=1

n1 1

� + �e−wl
1+�f̂

=
1

n0


k=1

n0 1

� + �ewk
0−�f̂

. �13�

�f̂ is understood to be the unique root of Eq. �13�, which
exists for any �� �0,1�. Different values of � result in dif-
ferent estimates for �f . Choosing

� =
n0

N
, � =

n1

N
, �14�

N=n0+n1, the estimate �13� coincides with Bennett’s optimal
estimate, which defines the two-sided estimate with a least
asymptotic mean-square error for a given value �=

n0

N or,
equivalently, for a given ratio r= �

� =
n1

n0
�20,26�. We denote

the optimal two-sided estimate, i.e., the solution of Eq. �13�
under the constraint �14�, by �f̂

1−� and simply refer to it as
the two-sided estimate. Note that the optimal estimator can
be written in the familiar form

1/2p
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p0.0001

p1

0p

w

w
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k
pr
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FIG. 1. �Color online� The overlap density p��w� bridges the
densities p0�w� and p1�w� of forward and reverse work values, re-

spectively. � is the fraction
n0

n0+n1
of forward work values, here sche-

matically shown for �=0.0001, �=0.5, and �=0.9999. The accu-
racy of two-sided free-energy estimates depends on how good
p��w� is sampled when drawing from p0�w� and p1�w�.
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l=1

n1 1

1 + e−wl
1+�f̂+ln n1/n0

= 

k=1

n0 1

1 + ewk
0−�f̂−ln n1/n0

. �15�

In the limit �=
n0

N →1, the two-sided estimate reduces to

the one-sided forward estimate �11�, �f̂

1−� →
�→1

�f̂

0, and, con-

versely, �f̂

1−� →
�→0

�f̂

1. Thus, the one-sided estimates are the
optimal estimates if we have given draws from only one of
the densities p0 or p1.

A characteristic quantity to express the performance of the

estimate �f̂

1−� is the mean-square error,

	��f̂

1−� − �f�2
 , �16�

which depends on the total sample size N=n0+n1 and the
fraction �=

n0

N . Here, the average is understood to be an en-
semble average in the value distribution of the estimate

�f̂

1−� for fixed N and �. In the limit of large n0 and n1, the
asymptotic mean-square error X �which then equals the vari-
ance� can be written as �20,26�

X�N,�� =
1

N

1

��
� 1

U�

− 1� . �17�

Provided the right-hand side of Eq. �17� exists, which is
guaranteed for any �� �0,1�, the N dependence of X is sim-
ply given by the usual 1

N factor, whereas the � dependence is
determined by the function U� given in Eq. �5�. Note that if

a two-sided estimate �f̂

1−� is calculated then essentially the
normalizing constant U� is estimated from two sides 0 and 1

�cf. Eqs. �7� and �13��. With an estimate �f̂

1−�, we therefore
always have an estimate of the mean-square error at hand.
However, the reliability of the latter naturally depends on the

degree of convergence of the estimate �f̂

1−�. The conver-
gence of the two-sided estimate can be checked with the
convergence measure introduced in Ref. �19�.

In the limits �=
n0

N →1 and �→0, respectively, the
asymptotic mean-square error X of the two-sided estimator
converges to the asymptotic mean-square error of the appro-
priate one-sided estimator �30�,

lim
�→1

X�N,�� =
1

N
Var0� p1

p0
� =

1

N
Var0�e−w+�f� , �18�

and

lim
�→0

X�N,�� =
1

N
Var1� p0

p1
� =

1

N
Var1�ew−�f� , �19�

where Var	 denotes the variance operator with respect to the
density p	, i.e.,

Var	�g� = 	�g − 	g
	�2
	, �20�

for an arbitrary function g�w� and 	� �0,1�.

III. THE OPTIMAL RATIO

Now we focus on the question raised in the introduction:
which value �o of � in the range �0,1� minimizes the mean-

square error �17� when the total sample size N=n0+n1 is
held fixed?

Let M be the rescaled asymptotic mean-square error given
by

M��� = NX�N,�� , �21�

which is a function of � only. Assuming �o� �0,1�, a nec-
essary condition for a minimum of M is that the derivative
M����= dM

d� of M vanishes at �o. Before calculating M� ex-
plicitly, it is beneficial to rewrite M by using the identity

U� = �
�

p0p1��p0 + �p1�
��p0 + �p1�2 dw

= �� p0
2

��p0 + �p1�2�
1

+ �� p1
2

��p0 + �p1�2�
0
. �22�

Subtracting ��+��U�
2 =U�

2 from Eq. �22� and recalling the
definition �3� of p�, one obtains

U��1 − U�� = ��
1��� + �
0����U�
2 , �23�

where the functions 
i are defined as


1��� = Var1� p�

p1
� =

1

U�
2 Var1� 1

� + �e−w+�f� ,


0��� = Var0� p�

p0
� =

1

U�
2 Var0� 1

� + �ew−�f� . �24�


0 and 
1 describe the relative fluctuations of the quantities
that are averaged in the two-sided estimation of �f �cf. Eq.
�13��.

With the use of formula �23�, M can be written as

M��� =

0���

�
+


1���
�

, �25�

and the derivative yields

M���� =

1���

�2 −

0���

�2 +
�
0���� + �
1����

��
. �26�

The derivatives of the 
 functions involve the first two de-
rivatives of U�, which will thus be computed first,

U�� ª
d

d�
U� = �

�

p0p1�p1 − p0�
��p0 + �p1�2 dw , �27�

and

U�� ª
d2

d�2U� = 2�
�

p0p1�p1 − p0�2

��p0 + �p1�3 dw . �28�

From this equation, it is clear that U� is convex in �, U��
�0, with a unique minimum in �0,1� �as U0=U1=1�. We can
rewrite the 
 functions with U� and U�� as follows:


1��� =
U� − �U��

U�
2 − 1,
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0��� =
U� + �U��

U�
2 − 1. �29�

Differentiating these expressions gives


1���� = −
�

U�
3 �U��U� − 2U��

2� ,


0���� =
�

U�
3 �U��U� − 2U��

2� . �30�


0 and 
1 are monotonically increasing and decreasing, re-
spectively. This immediately follows from writing the term
occurring in the brackets of Eqs. �30� as a variance in the
density p�,

U��U� − 2U��
2 = 2 Var�� p1 − p0

�p0 + �p1
�U�

2 , �31�

which is thus positive.
As a consequence of Eq. �30�, the relation

�
0���� + �
1���� = 0 ∀ � � �0,1� �32�

holds and M� reduces to

M���� =

1���

�2 −

0���

�2 . �33�

The derivatives of the 
 functions do not contribute to M�
due to the fact that the specific form of the two-sided esti-
mator �13� originates from minimizing the asymptotic mean-
square error �cf. �26��. The necessary condition for a local
minimum of M at �o, M���o�=0, now reads as

�o
2

�o
2 =


1��o�

0��o�

, �34�

where �o=1−�o is introduced. Using Eqs. �24� and �2�, the
condition �34� results in

Var1� 1

1 + e−w+�f+ln ro
� = Var0� 1

1 + ew−�f−ln ro
� . �35�

This means, the optimal ratio ro is such that the variances of
the random functions, which are averaged in the two-sided
estimation �15�, are equal. However, the existence of a solu-
tion of M����=0 is not guaranteed in general.

Writing Eq. �35� in the form

Var1� p1 − p0

�p0 + �p1
� = Var0� p1 − p0

�p0 + �p1
� �36�

prevents the equation from becoming a tautology.

IV. CONVEXITY OF THE MEAN-SQUARE ERROR

Theorem. The asymptotic mean-square error M��� is con-
vex in �.

In order to prove the convexity, we introduce the operator
���f�, which is defined for an arbitrary function f�w� by

���f� = � Var0�f� + � Var1�f� − U� Var��f� . �37�

Lemma. �� is positive semidefinite, i.e.,

���f� � 0 ∀ f�w� . �38�

For �� �0,1� and f�w��const, the equality holds if and only
if p0� p1.

Proof of the Lemma. Let 
f	= f�w�− 	f
	, 	� �0,1�. Then

���f� = �
�

��
f0
2p0 + �
f1

2p1 − 
f�
2 p0p1

�p0 + �p1
�dw

= �
�

��
f0
2p0 + �
f1

2p1���p0 + �p1� − 
f�
2 p0p1

�p0 + �p1
dw

= ���
�

�
f1p1 − 
f0p0�2

�p0 + �p1
dw + U���	f
0 + �	f
1

− 	f
��2, �39�

which is clearly positive. Provided f �const and ��0,1, the
integrand in the last line is zero ∀w if and only if p0� p1.
This completes the proof of the lemma. �

Proof of the Theorem. Consulting Eqs. �33� and �32�, the
second derivative of M reads as

M���� = 2�
1���
�3 +


0���
�3 � −

1

�2�

0���� . �40�

Expressing p0= p−�d and p1= p+�d in center and relative
“coordinates” p=�p0+�p1 and d= p1− p0, respectively, gives


1��� =
1

U�
2 Var1� p0

p
� =

�2

U�
2 Var1�d

p
� ,


0��� =
1

U�
2 Var0� p1

p
� =

�2

U�
2 Var0�d

p
� ,


0���� =
2�

U�

Var��d

p
� . �41�

Therefore, 1
2��U�

2 M�=��� d
p �, which is positive according to

the lemma. �
The convexity of the mean-square error is a fundamental

characteristic of Bennett’s acceptance ratio method. This
characteristic allows us to state a simple criterion for the
existence of a local minimum of the mean-square error in
terms of its derivatives at the boundaries. Namely, if

M��0� = Var1�ew−�f� − Var0�ew−�f� �42�

is negative and

M��1� = Var1�e−w+�f� − Var0�e−w+�f� �43�

is positive there exists a local minimum of M��� for �
� �0,1�. Otherwise, no local minimum exists and the global
minimum is found on the boundaries of �: if M��0��0, the
global minimum is found for �=0; thus, it is optimal to
measure work values in the reverse direction only and to use
the one-sided reverse estimator �12�. Else, if M��1��0, the
global minimum is found for �=1, implying the one-sided
forward estimator �11� to be optimal.
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In addition, the convexity of the mean-square error proves
the existence and uniqueness of the optimal ratio since a
convex function has a global minimum on a closed interval.

Corollary. If a solution of M����=0 exists, it is unique
and M��� attains its global minimum ��� �0,1�� there.

V. ESTIMATING THE OPTIMAL RATIO WITH FIRST
MOMENTS

In situations of practical interest, the optimal ratio is not
available a priori. Thus, we are going to estimate the optimal
ratio. There exist estimators of the optimal ratio since Ben-
nett. In addition, we have just proven that the optimal ratio
exists and is unique. However, there is still one obstacle to
overcome. Yet, all expressions for estimating the optimal ra-
tio are based on second moments �see, e.g., Eq. �35��. Due to
convergence issues, it is not practicable to base any estimator
on expressions that involve second moments. The estimator
would converge far too slowly. For this reason, we transform
the problem into a form that employs first moments only.

Assume we have given n0 and n1 work values in forward
and reverse direction, respectively, and want to estimate Ua,
with 0�a�1. According to Eq. �7�, we can estimate the
overlap measure Ua by using draws from the forward direc-
tion,

Ûa
�0� =

1

n0


k=1

n0 1

b + aewk
0−�f̂

, �44�

where b equals 1−a and for �f̂ the best available estimate of
�f is inserted, i.e., the two-sided estimate based on the n0
+n1 work values. Similarly, we can estimate the overlap
measure by using draws from the reverse direction,

Ûa
�1� =

1

n1


l=1

n1 1

a + be−wl
1+�f̂

. �45�

Since in general draws from both directions are available, it
is reasonable to take an arithmetic mean of both estimates

Ûa = aÛa
�1� + bÛa

�0�, �46�

where the weighting is chosen such that the better estimate

Ûa
�0� or Ûa

�1� contributes stronger: with increasing a the esti-

mate Ûa
�1� becomes more reliable, as Ua is the normalizing

constant of the bridging density pa �Eq. �3�� and pa →
a→1

p1,
and conversely for decreasing a.

From the estimate of the overlap measure, we can esti-
mate the rescaled mean-square error by

M̂�a� =
1

ab� 1

Ûa

− 1� �47�

for all a� �0,1�, a result that is entirely based on first mo-

ments. The infimum of M̂�a� finally results in an estimate �̂o

of the optimal choice �o of
n0

N ,

�̂o: ⇔ M̂��̂o� = inf
a

M̂�a� . �48�

When searching for the infimum, we also take

M̂�0� =
1

n0


k=1

n0

ewk
�0�−�f̂

−
1

n1


l=1

n1

ewl
�1�−�f̂

,

M̂�1� =
1

n1


l=1

n1

e−wl
�1�+�f̂

−
1

n0


k=1

n0

e−wk
�0�+�f̂

, �49�

into account which follow from a series expansion of Eq.
�47� in a at a=0 and a=1, respectively.

VI. INCORPORATING COSTS

The costs of measuring a work value in forward direction
may differ from the costs of measuring a work value in re-
verse direction. The influence of costs on the optimal ratio of
sample sizes is investigated here.

Different costs can be due to a direction dependent effort
of experimental or computational measurement of work �un-
folding a RNA may be much easier than folding it�. We
assume the work values to be uncorrelated, which is essential
for the validity of the theory presented in this paper. Thus, a
source of nonequal costs, which arises especially when work
values are obtained via computer simulations, is the differ-
ence in the strength of correlations of consecutive Monte
Carlo steps in forward and reverse direction. To achieve un-
correlated draws, the “correlation lengths” or “correlation
times” have to be determined within the simulation too.
However, this is advisable in any case of two-sided estima-
tion, independent of the sampling strategy.

Let c0 and c1 be the costs of drawing a single forward and
reverse work value, respectively. Our goal is to minimize the
mean-square error X= 1

N M while keeping the total costs c
=n0c0+n1c1 constant. Keeping c constant results in

N�c,�� =
c

�c0 + �c1
, �50�

which in turn yields

X�c,�� =
1

N�c,��
M��� . �51�

If a local minimum exists, it results from �
��X�c ,��=0,

which leads to

�o
2

�o
2 =

c0
1��o�
c1
0��o�

, �52�

a result Bennett was already aware of �26�. However, based
on second moments, it was not possible to estimate the op-
timal ratio ro accurately and reliably. Hence, Bennett pro-
posed to use a suboptimal equal-time strategy or equal cost
strategy, which spends an equal amount of expenses to both
directions, i.e., n0c0=n1c1= c

2 or
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�ec

�ec
=

c0

c1
, �53�

where �ec=1−�ec is the equal cost choice for �=
n0

N . This
choice is motivated by the following result:

X�c,�� �
1

2
X�c,�ec� ∀ � � �0,1� , �54�

which states that the asymptotic mean-square error of the
equal cost strategy is at most suboptimal by a factor of 2
�26�. Note, however, that the equal cost strategy can be far
more suboptimal if the asymptotic limit of large sample sizes
is not reached.

Since we can base the estimator for the optimal ratio ro on
first moments �see Sec. V�, we propose a dynamic strategy
that performs better than the equal cost strategy. The infi-
mum of

X̂�c,a� =
ac0 + bc1

c
M̂�a� �55�

results in the estimate �̂o of the optimal choice �o of
n0

N ,

�̂o: ⇔ X̂�c,�̂o� = inf
a

X̂�c,a� . �56�

We remark that opposed to M���, X�c ,�� is not necessarily
convex. However, a global minimum clearly exists and can
be estimated.

VII. A DYNAMIC SAMPLING STRATEGY

Suppose we want to estimate the free-energy difference
with the acceptance ratio method but have a limit on the total
amount of expenses c that can be spend for measurements of
work. In order to maximize the efficiency, the measurements
are to be performed such that

n0

N finally equals the optimal
fraction �o of forward measurements.

The dynamic strategy is as follows:
�1� In absence of preknowledge on �o, we start with Ben-

nett’s equal cost strategy �53� as an initial guess of �o.
�2� After drawing a small number of work values, we

make preliminary estimates of the free-energy difference, the
mean-square error, and the optimal fraction �o.

�3� Depending on whether the estimated rescaled mean-

square error M̂�a� is convex, which is a necessary condition
for convergence, our algorithm updates the estimate �̂o of
�o.

�4� Further work values are drawn such that
n0

N dynami-
cally follows �̂o, while �̂o is updated repeatedly.

There is no need to update �̂o after each individual draw.
Splitting the total costs into a sequence 0�c�1�� . . . �c�p�

=c, not necessarily equidistant, we can predefine when and
how often an update in �̂o is made. Namely, this is done
whenever the actually spent costs reach the next value c��� of
the sequence.

The dynamic strategy can be cast into an algorithm.
Algorithm. Set the initial values n0

�0�=n1
�0�=0, �̂o

�1�=�ec. In
the �th step of the iteration �=1, . . . , p determine

n0
��� = ��̂o

���N���� ,

n1
��� = ��̂o

���N���� , �57�

with

N��� =
c���

�̂o
���c0 + �̂o

���c1

, �58�

where � � means rounding to the next lower integer. Then,
�n0

���=n0
���−n0

��−1� additional forward and �n1
���=n1

���−n1
��−1�

additional reverse work values are drawn. Using the entire

present samples, an estimate �f̂��� of �f is calculated accord-
ing to Eq. �13�. With the free-energy estimate at hand,

M̂����a� is calculated for all values of a� �0,1� via Eqs.
�44�–�47� and �49� discretized, say in steps �a=0.01. If

M̂����a� is convex, we update the recent estimate �̂o
��� of �o to

�̂o
��+1� via Eqs. �55� and �56�. Otherwise, if M̂����a� is not

convex, the corresponding estimate of �o is not yet reliable
and we keep the recent value, �̂o

��+1�= �̂o
���. Increasing � by

one, we iteratively continue with Eq. �57� until we finally

obtain �f̂�p�, which is the optimal estimate of the free-energy
difference after having spend all costs c.

Note that an update in �̂o
��� may result in negative values

of �n0
��� or �n1

���. Should �n0
��� happen to be negative, we set

n0
���=n0

��−1� and

n1
��� = �c��� − c0n0

��−1�

c1
� . �59�

We proceed analogously, if �n1
��� happens to be negative.

The optimal fraction �o depends on the cost ratio c1 /c0,
i.e., the algorithm needs to know the costs c0 and c1. How-
ever, the costs are not always known in advance and may
also vary over time. Think of a long-time experiment which
is subject to currency changes, inflation, terms of trade, in-
novations, and so on. Of advantage is that the dynamic sam-
pling strategy is capable of incorporating varying costs. In
each iteration step of the algorithm, one just inserts the actual
costs. If desired, the breakpoints c��� may also be adapted to
the actual costs. Should the costs initially be unknown �e.g.,
the “correlation length” of a Monte Carlo simulation needs to
be determined within the simulation first� one may use any
reasonable guess until the costs are known.

VIII. EXAMPLE

For illustration of results, we choose exponential work
distributions

pi�w� =
1

�i
e−w/�i, w � � = R+, �60�

�i�0, i=0,1. According to the fluctuation theorem �2�, we
have �1=

�0

1+�0
and �f =ln�1+�0�.

Exponential work densities arise in a natural way in the
context of a two-dimensional harmonic oscillator with Bolt-
zmann distribution ��x ,y�=e−�1/2��2�x2+y2� /Z, where Z
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=2� /�2 is a normalizing constant �partition function� and
�x ,y��R2 �28�. Drawing a point �x ,y� from the initial den-
sity �=�0 defined by setting �=�0, and switching the fre-
quency to �1��0 instantaneously amounts in the work
1
2 ��1

2−�0
2��x2+y2�. The probability density of observing a

specific work value w is given by the exponential density p0

with �0=
�1

2−�0
2

�0
2 . Switching the frequency in the reverse direc-

tion �1→�0, with the point �x ,y� drawn from �=�1 with
�=�1, the density of work �with interchanged sign� is given

by p1 with �1=
�1

2−�0
2

�1
2 =

�0

1+�0
. The free-energy difference of the

states characterized by �0 and �1 is the log ratio of their
normalizing constants �f =−ln

Z1

Z0
= ln�1+�0�. A plot of the

work densities for �0=10 is enclosed in Fig. 2.
Now, with regard to free-energy estimation, is it better to

use one- or two-sided estimators? In other words, we want to
know whether the global minimum of M��� is on the bound-
aries �0,1� of � or not. By the convexity of M, the answer is
determined by the signs of the derivatives M��0� and M��1�
at the boundaries. The asymptotic mean-square errors �18�
and �19� of the one-sided estimators are calculated to be

M�1� = Var0�e−w+�f� =
�0

2

1 + 2�0
, �61�

for the forward direction and

M�0� = Var1�ew−�f� =
�0

2

1 − �0
2 , �0 � 1, �62�

for the reverse direction. For �0�1, the variance of the re-
verse estimator diverges. Note that M�0��M�1� holds for all
�0�0, i.e., forward estimation of �f is always superior if
compared to reverse estimation. Furthermore, a straightfor-
ward calculation gives

M��1� =
�0

3��0 + �−���0 − �+�
�1 + 2�0�2�1 + 3�0�

, �63�

where ��= 1
2 ��17�3�, and

M��0� = −
�0

3�2 + �1 − 2�0��0�
�1 − �0

2�2�1 − 2�0�
, �0 �

1

2
, �64�

and M��0�=−� for �0�
1
2 . Thus, for the range �0� �0,�+�

we have M��0��0 as well as M��1��0 and therefore �o
=1, i.e., the forward estimator is superior to any two-sided
estimator �13� in this range. For �0� ��+ ,��, we have
M��0��0 and M��1��0, specifying that �o� �0,1�, i.e.,
two-sided estimation with an appropriate choice of � is op-
timal.

Numerical calculation of the function U� and subsequent
evaluation of M��� allows to find the “exact” optimal frac-
tion �o. Examples for U� and M are plotted in Fig. 3.

The behavior of �o as a function of �0 is quite interesting
�see Fig. 4�. We can interpret this behavior in terms of the
Boltzmann distributions as follows. Without loss of general-
ity, assume �0=1 is fixed. Increasing �0 then means increas-
ing �1. The density �1 is fully nested in �0 �cf. the inset of
Fig. 2� �remember that �1��0� and converges to a delta
peak at the origin with increasing �1. This means that by
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FIG. 3. The overlap function U� and the rescaled asymptotic
mean-square error M for �0=1000. Note that M��� diverges for
�→0.
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the two-sided estimation in dependence of the average forward
work �0. For �0��+�3.56, the one-sided forward estimator is
optimal, i.e., �o=1.

0 2 4 6 8 10
0

0.5

1

w

w
or

k
pr

ob
ab

ili
ty

de
ns

ity

−2 0 2
0

0.5

1

x

FIG. 2. The main figure displays the exponential work densities
p0 �thick line� and p1 �thin line� for the choice of �0=10 and,
according to the fluctuation theorem, �1=10 /11. The inset displays
the corresponding Boltzmann distributions �0�x ,y� �thick� and
�1�x ,y� �thin� both for y=0. Here, �0 is set equal to 1 arbitrarily,
hence, �1

2= �1+�0��0
2=11. The free-energy difference is �f =ln�1

+�0�=ln��1
2 /�0

2��2.38.
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sampling from �0 we can obtain information about the full
density �1 quite easily, whereas sampling from �1 provides
only poor information about �0. This explains why �o=1
holds for small values of �0. However, with increasing �1
the density �1 becomes so narrow that it becomes difficult to
obtain draws from �0 that fall into the main part of �1. There-
fore, it is better to add some information from �1, hence, �o
decreases. Increasing �1 further, the relative number of
draws needed from �1 will decrease, as the density converges
toward the delta distribution. Finally, it will become suffi-
cient to make only one draw from �1 in order to obtain the
full information available. Therefore, �o converges toward 1
in the limit �0→�.

In the following, the dynamic strategy proposed in
Sec. VII is applied. We choose �0=1000 and c0=c1. The
equal cost strategy draws according to �ec=0.5, which is
used as initial value in the dynamic strategy. The results of a
single run are presented in Figs. 5–7. Starting with N=100,
the estimate of �o is updated in steps of �N=100. The actual

forward fractions � together with the estimated values of the
optimal fraction �o are shown in Fig. 5. The first three esti-

mates of �o are rejected because the estimated function M̂���
is not yet convex. Therefore, � remains unchanged at the
beginning. Afterward, � follows the estimates of �o and
starts to fluctuate about the exact value of �o. Some esti-
mates of the function M corresponding to this run are de-
picted in Fig. 6. For these estimates, � is discretized in steps
��=0.01. Remarkably, the estimates of �o that result from
these curves are quite accurate even for relatively small N.
Finally, Fig. 7 shows the free-energy estimates of the run
�not for all values of N� compared with those of a single run
where the equal cost strategy is used. We find some increase
in accuracy when using the dynamic strategy.

In combination with a good a priori choice of the initial
value of �, the use of the dynamic strategy enables a superior
convergence and precision of free-energy estimation �see
Figs. 8 and 9�. Due to insight into some particular system
under consideration, it is not unusual that one has a priori
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FIG. 5. �Color online� Example of a single run using the dy-
namic strategy: the optimal fraction �o of forward measurements
for the two-sided free-energy estimation is estimated at predeter-
mined values of total sample sizes N=n0+n1 of forward and reverse
work values. Subsequently, taking into account the current actual

fraction �=
n0

N , additional work values are drawn such that we come
closer to the estimated �̂o.
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minimum of the estimated function M̂ determines the estimate of
the optimal fraction �o of forward work measurements.
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estimated mean-square error X.
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FIG. 8. �Color online� Averaged estimates from 10 000 indepen-
dent runs with dynamic strategy versus 10 000 runs with equal cost
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knowledge which results in a better guess for the initial
choice of � in the dynamic strategy than starting with �
=�ec. For instance, a good initial choice is known when es-
timating the chemical potential via Widom’s particle inser-
tion and deletion �31�. Namely, it is a priori clear that insert-
ing particles yields much more information than deleting
particles since the phase space which is accessible to par-
ticles in the “deletion system” is effectively contained in the
phase space accessible to the particles in the “insertion sys-
tem” �cf., e.g., �19��. A good a priori initial choice for � may
be �=0.9 with which the dynamic strategy outperforms any
other strategy that the authors are aware of.

Once reaching the limit of large sample sizes, the dy-
namic strategy is insensitive to the initial choice of � since
the strategy is robust and finds the optimal fraction �o of
forward measurements itself.

IX. CONCLUSION

Two-sided free-energy estimation, i.e., the acceptance ra-
tio method �26�, employs samples of n0 forward and n1 re-
verse work measurements in the determination of free-
energy differences in a statistically optimal manner.
However, its statistical properties depend strongly on the ra-
tio

n1

n0
of work values used. As a central result, we have

proven the convexity of the asymptotic mean-square error of
two-sided free-energy estimation as a function of the fraction

�=
n0

N of forward work values used. From here follows im-
mediately the existence and uniqueness of the optimal frac-
tion �o, which minimizes the asymptotic mean-square error.
This is of particular interest if we can control the value of �,
i.e., can make additional measurements of work in either
direction. Drawing such that we finally reach

n0

N =�o, the ef-
ficiency of two-sided estimation can be enhanced consider-
ably. Consequently, we have developed a dynamic sampling
strategy which iteratively estimates �o and makes additional
draws or measurements of work. Thereby, the convexity of
the mean-square error enters as a key criterion for the reli-
ability of the estimates. For a simple example, which allows
to compare with analytic calculations, the dynamic strategy
has shown to work perfectly.

In the asymptotic limit of large sample sizes, the dynamic
strategy is optimal and outperforms any other strategy. Nev-
ertheless, in this limit it has to compete with the near optimal
equal cost strategy of Bennett, which also performs very
good. It is worth mentioning that even if the latter comes
close to the performance of ours, it is worthwhile the effort
of using the dynamic strategy since the underlying algorithm
can be easily implemented and does cost quite anything if
compared to the effort required for drawing additional work
values.

Most important for experimental and numerical estima-
tion of free-energy differences is the range of small and mod-
erate sample sizes. For this relevant range, it is found that the
dynamic strategy performs very good too. It converges sig-
nificantly better than the equal cost strategy. In particular, for
small and moderate sample sizes it can improve the accuracy
of free-energy estimates by half an order of magnitude.

We close our considerations by mentioning that the two-
sided estimator is typically far superior with respect to one-
sided estimators: assume the support of p0 and p1 is symmet-
ric about �f �32�; then, if the densities are symmetric to each
other, p0��f +w�= p1��f −w�, the optimal fraction of forward
draws is

n0

N = 1
2 by symmetry. Therefore, if the symmetry is

violated not too strongly, the optimum will remain near 0.5.
Continuous deformations of the densities change the optimal
fraction �o continuously. Thus, �o does not reach 0 and 1,
respectively, for some certain strength of asymmetry. It is
exceptionally hard to violate the symmetry such that �o hits
the boundary 0 or 1. In consequence, in almost all situations,
the two-sided estimator is superior.

ACKNOWLEDGMENTS

We thank Andreas Engel for a critical reading of the
manuscript.

�1� C. Jarzynski, Phys. Rev. Lett. 78, 2690 �1997�.
�2� G. E. Crooks, Phys. Rev. E 60, 2721 �1999�.
�3� J. G. Kirkwood, J. Chem. Phys. 3, 300 �1935�.
�4� A. Gelman and X.-L. Meng, Stat. Sci. 13, 163 �1998�.

�5� R. W. Zwanzig, J. Chem. Phys. 22, 1420 �1954�.
�6� G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187

�1977�.
�7� M.-H. Chen and Q.-M. Shao, Ann. Stat. 25, 1563 �1997�.

2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

total costs, log
10

(c)

m
ea

n
sq

ua
re

er
ro

r
of

∆f
es

tim
at

es

2.8 3 3.2 3.4
0

0.5

1

1.5

2

2.5

3

3.5

4

equal cost strategy
dynamic strategy
α=α

o

asymptotic behaviour

FIG. 9. �Color online� Displayed are mean-square errors of free-
energy estimates using the same data as in Fig. 8. In addition, the
mean-square errors of estimates with constant �=�o are included,
as well as the asymptotic behavior �51�. The inset shows that the
mean-square error of the dynamic strategy approaches the
asymptotic optimum, whereas the equal cost strategy is suboptimal.
Note that for small sample sizes, the asymptotic behavior does not
represent the actual mean-square error.

CHARACTERISTIC OF BENNETT’S ACCEPTANCE… PHYSICAL REVIEW E 80, 031111 �2009�

031111-9



�8� H. Oberhofer and C. Dellago, Comput. Phys. Commun. 179,
41 �2008�.

�9� M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301
�1990�.

�10� S. X. Sun, J. Chem. Phys. 118, 5769 �2003�.
�11� F. M. Ytreberg and D. M. Zuckerman, J. Chem. Phys. 120,

10876 �2004�.
�12� C. Jarzynski, Phys. Rev. E 73, 046105 �2006�.
�13� A. Engel, Phys. Rev. E 80, 021120 �2009�.
�14� H. Then and A. Engel, Phys. Rev. E 77, 041105 �2008�.
�15� X.-L. Meng and S. Schilling, J. Comput. Graph. Stat. 11, 552

�2002�.
�16� C. Jarzynski, Phys. Rev. E 65, 046122 �2002�.
�17� H. Oberhofer, C. Dellago, and S. Boresch, Phys. Rev. E 75,

061106 �2007�.
�18� S. Vaikuntanathan and C. Jarzynski, Phys. Rev. Lett. 100,

190601 �2008�.
�19� A. M. Hahn and H. Then, Phys. Rev. E 79, 011113 �2009�.
�20� X.-L. Meng and W. H. Wong, Stat. Sin. 6, 831 �1996�.

�21� A. Kong, P. McCullagh, X.-L. Meng, D. Nicolae, and Z. Tan,
J. R. Stat. Soc. Ser. B �Stat. Methodol.� 65, 585 �2003�.

�22� M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105
�2008�.

�23� D. M. Ceperley, Rev. Mod. Phys. 67, 279 �1995�.
�24� D. Frenkel and B. Smit, Understanding Molecular Simulation,

2nd ed. �Academic Press, London, 2002�.
�25� D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, Jr.,

and C. Bustamante, Nature �London� 437, 231 �2005�.
�26� C. H. Bennett, J. Comput. Phys. 22, 245 �1976�.
�27� G. E. Crooks, Phys. Rev. E 61, 2361 �2000�.
�28� M. R. Shirts and V. S. Pande, J. Chem. Phys. 122, 144107

�2005�.
�29� M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande, Phys. Rev.

Lett. 91, 140601 �2003�.
�30� J. Gore, F. Ritort, and C. Bustamante, Proc. Natl. Acad. Sci.

U.S.A. 100, 12564 �2003�.
�31� B. Widom, J. Chem. Phys. 39, 2808 �1963�.
�32� Which is not the case for the densities studied in Sec. VIII.

ALJOSCHA M. HAHN AND HOLGER THEN PHYSICAL REVIEW E 80, 031111 �2009�

031111-10


